

Блок 1. Комбинаторика

Интернет-карусель 2021-2022

Задания

- 1. Выписаны все 7-значные числа, в записи каждого из которых одна цифра «1», одна цифра «2» и пять цифр «0». Сколько таких чисел?
- 2. Выписаны все 7-значные числа, в записи каждого из которых одна цифра «1», одна цифра «2» и пять цифр «0». Чему равна сумма всех этих чисел?
- 3. На 28 клеток, находящиеся у края шахматной доски 8х8, ставят 27 белых фишек и одну черную фишку. Сколько различных расположений фишек? Расположения, совпадающие при поворотах (но не переворотах) доски, считать одинаковыми.
- 4. На 28 клеток, находящиеся у края шахматной доски, ставят 25 белых фишек и 3 черные фишки. Сколько различных расположений фишек, если у каждого края доски стоит ровно одна чёрная фишка? Расположения, совпадающие при поворотах (но не переворотах) доски, считать одинаковыми.
- 5. Сколько трехзначных чисел с суммой цифр не меньшей 4?
- 6. На 28 клеток, находящиеся у края шахматной доски 8 × 8, ставят 26 белых и 2 черные фишки. Сколько различных расположений фишек? Расположения, совпадающие при поворотах (но не переворотах) доски, считать одинаковыми.
- 7. Чтобы открыть кодовый замок на сейфе, нужно набрать в нужном порядке 3 цифры (среди них могут быть и одинаковые). Джеймс знает, что произведение этих цифр равно 60. Сколько максимальное количество комбинаций ему придется перебрать, чтобы открыть сейф?
- 8. В мешке у Деда Мороза есть пряники четырех разных цветов в виде звёздочек и шишечек. Сколькими способами Дед Мороз может подарить два пряника Машеньке, если это должны быть звездочка и шишечка двух разных цветов?
- 9. В мешке у Деда Мороза есть пряники четырех разных цветов в виде звёздочек и шишечек. Машенька хочет три пряника трех разных цветов, чтобы среди них обязательно были и звёздочка, и шишечка. Сколькими способов, которыми Дед Мороз может собрать такой подарок?
- 10. Трехзначное число с суммой цифр 2 умножается на трехзначное число с суммой цифр 4. Сколько различных результатов может получиться?
- 11. Трехзначное число с суммой цифр 3 складывается с трехзначным числом с суммой цифр 4. Сколько различных результатов может получиться?

Международные соревнования «Интернет-карусели» Карусель-кружок. Математика 7 2021–2022 учебный год

- 12. У Олега есть 20 одинаковых красных, 18 одинаковых синих кубиков и один белый кубик. Он хочет из всех кубиков построить башню высотой 39 кубиков, в которой нет соседних одноцветных кубиков. Сколько различных башен может построить Олег?
- 13. На уроке Марья Ивановна задала детям упражнение. Нужно в числах 2021 и 2022 поставить запятые (в каждом числе на одном из трех мест), а потом перемножить полученные числа. Известно, что все дети хорошо слышат и прекрасно считают. Сколько различных результатов они могли получить?
- 14. Стороны правильного шестиугольника, вырезанного из картона, красят синий или красный цвет. Каждую сторону целиком в один цвет, все оба цвета присутствуют. Две окраски считаются одинаковыми, если шестиугольники можно наложить так, что раскраски совпадут. Сколько различных раскрасок?
- 15. Сколько натуральных чисел, кратных пяти, в записи которых более одной цифры и цифры в записи возрастают?
- 16. Сколько натуральных чисел, кратных пяти, в записи которых более одной цифры и цифры в записи убывают?
- 17. Сколько костей в стандартном наборе домино, на которых сумма очков делится на 3?
- 18. Сделали набор домино, в котором на половинках стоят очки от 0 до 9. Сколько получилось костей, на которых сумма очков делится на 3?

karusel.desc.ru ~ 12 ~ karusel.desc.ru ~ 13 ~

Блок 1. Комбинаторика

Интернет-карусель 2021-2022

Ответы, указания и решения

Рекомендуем рассматривать некоторые задачи данной карусели блоками. Взаимосвязаны задачи про 7-значные числа (№ 1 и № 2), про фишки на краю доски (№ 3, № 4 и № 6), про пряники (№ 8 и № 9), про числа с убывающими цифрами (№ 15 и № 16), про кости домино (№ 17 и № 18).

1. Выписаны все 7-значные числа, в записи каждого из которых одна цифра «1», одна цифра «2» и пять цифр «0». Сколько таких чисел?

Ответ: 12.

Решение. Первая цифра отлична от нуля. Если первая цифра — «1», то можно составить 6 чисел: 1200000, 1020000, 1002000, 1000200, 1000020, 1000002. Если первая цифра — «2», то можно составить еще 6 чисел, которые можно получить из предыдущих, поменяв местами «1» и «2».

2. Выписаны все 7-значные числа, в записи каждого из которых одна цифра «1», одна цифра «2» и пять цифр «0». Чему равна сумма всех этих чисел?

Ответ: 183333333.

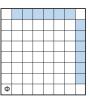
Указание: 6222222 + 12111111 = 18333333.

Решение. Всего 12 чисел. Если складывать столбиком, то в первом разряде будет стоять по шесть цифр «1» и «2» (сумма 18), в каждом из остальных разрядов — 10 цифр «0» и по одной «1» и «2» (сумма 3). Значит, сумма равна 18 333 333.

3. На 28 клеток, находящиеся у края шахматной доски 8 × 8, ставят 27 белых фишек и одну черную фишку. Сколько различных расположений фишек? Расположения, совпадающие при поворотах (но не переворотах) доски, считать одинаковыми.

Ответ: 7.

Решение. Чёрная фишка находится у одной из сторон, в одной из 8 клеток. При повороте совпадают только положения в углах, поэтому всего 8-1=7 различных расположений.


4. На 28 клеток, находящиеся у края шахматной доски, ставят 25 белых фишек и 3 черные фишки. Сколько различных расположений фишек, если у каждого края доски стоит ровно одна чёрная фишка? Расположения, совпадающие при поворотах (но не переворотах) доски, считать одинаковыми.

Международные соревнования «Интернет-карусели» Карусель-кружок. Математика 7 2021–2022 учебный год

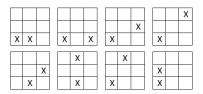
Ответ: 36.

Решение. Чтобы у каждого края доски стояла ровно одна чёрная фишка, нужно одну фишку поставить в угол, а две другие — на сторонах (но не в углу), не прилегающих к этому углу (отмечены на рисунке). Итого $6 \cdot 6 = 36$ вариантов, которые не совпадают при поворотах доски.

5. Сколько трехзначных чисел с суммой цифр не меньшей 4?

Ответ: 890.

Решение. Всего трехзначных чисел 900. Из них не подходят числа с суммой цифр 1, 2 или 3. С суммой цифр 1 есть только одно число 100. С суммой цифр 2 — 3 числа: 101, 110 и 200. С суммой цифр 3 — 6 чисел: 111, 102, 120, 201, 210 и 300. Всего не подходят 1+3+6=10 чисел. Искомое количество равно 900-10=890.


6. На 28 клеток, находящиеся у края шахматной доски 8 × 8, ставят 26 белых и 2 черные фишки. Сколько различных расположений фишек? Расположения, совпадающие при поворотах (но не переворотах) доски, считать одинаковыми.

Ответ: 98.

Решение. Всего у края шахматной доски 28 клеток, можно отметить (без учёта совпадений при поворотах) $28 \cdot 27 : 2 = 14 \cdot 27$ пар клеток. Заметим, среди этих вариантов есть 14 симметричных расположений (когда чёрные клетки расположены симметрично относительно центра доски).

При поворотах несимметричные расположения разбиваются на группы по 4 варианта, которые оказываются совпадающими; симметричные — на группы по 2 варианта. Значит, всего $(14 \cdot 27 - 14) : 4 + 14 : 2 = 98$.

Комментарий. Например, такими же подсчётами для доски 3×3 получаем $(8\cdot 7:2-4):4+4:2=8$ вариантов. Их можно получить перебором, среди них можно увидеть 2 симметричных расположения.

7. Чтобы открыть кодовый замок на сейфе, нужно набрать в нужном порядке 3 цифры (среди них могут быть и одинаковые). Джеймс знает, что произведение этих цифр

равно 60. Сколько максимальное количество комбинаций ему придется перебрать, чтобы открыть сейф?

Ответ: 12.

Решение. Так как 60 кратно 5, то одна из цифр — 5. Остается набрать произведение 12 — это $2 \cdot 6$ или $3 \cdot 4$. Значит, надо набрать (2; 5; 6) или (3; 4; 5). В каждом случае по 3! = 6 вариантов. итого $2 \cdot 6 = 12$.

8. В мешке у Деда Мороза есть пряники четырех разных цветов в виде звёздочек и шишечек. Сколькими способами Дед Мороз может подарить два пряника Машеньке, если это должны быть звездочка и шишечка двух разных цветов?

Ответ: 12.

Решение. Звёздочку можно выбрать 4 способами, в пару ей — шишечку любого из трёх оставшихся цветов. Всего $4 \cdot 3 = 12$ вариантов.

9. В мешке у Деда Мороза есть пряники четырех разных цветов в виде звёздочек и шишечек. Машенька хочет три пряника трех разных цветов, чтобы среди них обязательно были и звёздочка, и шишечка. Сколькими способов, которыми Дед Мороз может собрать такой подарок?

Ответ: 24.

Решение. Это либо две звёздочки и шишечка, либо две шишечки и звёздочка. В первом случае есть $4\cdot 3: 2=6$ способов выбрать две звёздочки, и к каждому такому выбору есть еще 2 способа выбрать шишечку. Всего $6\cdot 2=12$ способов. Во втором случае получится еще столько же. Итого 12+12=24.

10. Трехзначное число с суммой цифр 2 умножается на трехзначное число с суммой цифр 4. Сколько различных результатов может получиться?

Ответ: 26.

Решение. Трехзначных чисел с суммой цифр 2 ровно 3 штуки: 101, 110 и 200; с суммой цифр 4 — ровно 10 штук: 103, 112, 121, 130, 202, 211, 220, 301, 310 и 400.

Всего можно составить $3\cdot 9=27$ произведений, у которых совпадают значения в четырёх парах: $110\cdot 202=101\cdot 220,\ 121\cdot 200=110\cdot 220,\ 400\cdot 101=200\cdot 202$ и $400\cdot 110=200\cdot 220.$ Это можно проверить по таблице умножения:

103	112	121	130	202	211	220	301	310	400	
10403	11312	12221	13130	20402	21311	22220	30401	31310	40400	101
11330	12320	13310	14300	22220	23210	24200	33110	34100	44000	110
20600	22400	24200	26000	40400	42200	44000	60200	62000	80000	200

Значит, получается 30 – 4 = 26 различных результатов.

Международные соревнования «Интернет-карусели» Карусель-кружок. Математика 7 2021–2022 учебный год

11. Трехзначное число с суммой цифр 3 складывается с трехзначным числом с суммой цифр 4. Сколько различных результатов может получиться?

Ответ: 21.

Решение. При сложении двух таких чисел не может быть перехода через разряд, поэтому получится трехзначное число с суммой цифр 7 — таких 28 штук.

Это можно найти перебором, рассматривая наибольшую цифру числа.

Если наибольшая — «7», то число одно (700).

Если наибольшая — «6», то число состоит из цифр «610», всего 4 таких числа.

Если наибольшая — «5», то число состоит из цифр «520» или «511», всего таких — 4+3=7 штук.

Если наибольшая — «4», то число состоит из цифр «430» или «412», всего таких — 4+6=10 штук.

Если наибольшая — «3», то число состоит из цифр «331» или «322», всего таких — 3 + 3 = 6 штук.

Всего 1+4+7+10+6=28 штук.

При этом мы не можем получить в виде такой суммы числа, начинающиеся с 1 — а таких 7. Значит. ответ 28 – 7 = 21.

12. У Олега есть 20 одинаковых красных, 18 одинаковых синих кубиков и один белый кубик. Он хочет из всех кубиков построить башню высотой 39 кубиков, в которой нет соседних одноцветных кубиков. Сколько различных башен может построить Олег?

Ответ: 19

Решение. Между любыми подряд идущими красными кубиками должен быть кубик другого цвета. Между 20 кубиками 19 таких мест, из них 18 мест занимают синие кубики и одно — белый кубик. Всего 19 вариантов.

13. На уроке Марья Ивановна задала детям упражнение. Нужно в числах 2021 и 2022 поставить запятые (в каждом числе — на одном из трех мест), а потом перемножить полученные числа. Известно, что все дети хорошо слышат и прекрасно считают. Сколько различных результатов они могли получить?

Ответ: 5.

Решение. Произведения будут отличаться только постановкой запятой. В каждом множителе после запятой 1, 2 или 3 цифры. Значит, в произведении после запятой от 1+1=2 до 3+3=6 цифр, то есть 2, 3, 4, 5 или 6 штук — 5 вариантов.

14. Стороны правильного шестиугольника, вырезанного из картона, красят синий или красный цвет. Каждую сторону целиком в один цвет, все оба цвета присутствуют.

karusel.desc.ru ~ 16 ~ karusel.desc.ru ~ 17 ~

Две окраски считаются одинаковыми, если шестиугольники можно наложить так, что раскраски совпадут. Сколько различных раскрасок?

Ответ: 11.

Решение. Есть 1 способ, если синяя сторона одна. Если синих сторон две, то либо они соседние, либо расположены через одну, либо противоположные — всего 3 способа. Если есть три синие стороны, то либо (1) среди них нет соседних, либо (2) они три подряд идущие, (3) две соседние, а одна с ними не соседствует. Итого 1+3+3=7 вариантов.

Если синих 4 или 5 сторон, то красных 2 или 1 сторона, таких вариантов 3 + 1 = 4. Итого 7 + 4 = 11.

15. Сколько натуральных чисел, кратных пяти, в записи которых более одной цифры и цифры в записи возрастают?

Ответ: 15.

Решение. Надо выбрать несколько (хотя бы одну) цифру из набора 1234 и поставить перед цифрой 5. Это можно сделать $2^4 - 1 = 15$ способами.

16. Сколько натуральных чисел, кратных пяти, в записи которых более одной цифры и цифры в записи убывают?

Ответ: 526.

Решение. Есть числа, оканчивающиеся на «0» и на «5».

- (1) Если оканчивается на «5», то надо выбрать несколько (хотя бы одну) цифру из набора 9876 и поставить перед цифрой «5». Это можно сделать $2^4-1=15$ способами.
- (2) Если оканчивается на «0», то надо выбрать несколько (хотя бы одну) цифру из набора 987654321 и поставить перед цифрой «0». Это можно сделать $2^9 1 = 511$ способами.

Итого 511 + 15 = 526 вариантов.

17. Сколько костей в стандартном наборе домино, на которых сумма очков делится на 3?

Ответ: 10.

Решение. Кости домино можно изобразить в виде ступенчатой таблицы, показанной справа. Крестиком отмечены те кости, на которых сумма очков делится на 3. Их 10 штук.

	0	1	2	3	4	5	6
6	X			X			X
6 5		X			X		
4 3			X				
	X			X			
2		X					
1							
0	Χ						

Международные соревнования «Интернет-карусели» Карусель-кружок. Математика 7 2021–2022 учебный год

18. Сделали набор домино, в котором на половинках стоят очки от 0 до 9. Сколько получилось костей, на которых сумма очков делится на 3?

Ответ: 19.

Решение. Кости домино можно изобразить в виде ступенчатой таблицы, показанной справа. Крестиком отмечены те кости, на которых сумма очков делится на 3. Их 10 штук.

	0	1	2	3	4	5	6	7	8	9
9	X			X			X			X
9 8 7		X			Х			Х		
7			X			X			- 50	
6	X			X			Х			
6 5 4 3 2		X			Х					
4			X							
3	X			X						
2		X	0							
1			,							
0	Χ									